Counterfactual Regret Minimization, Variants and its Application to Poker

Franz Srambical
Department of Computer Science
Technical University of Munich
85748 Garching, Bavaria

Abstract

All major bots of the poker variant Texas Hold’em of the last
couple of years are fundamentally based on counterfactual
regret minimization (CFR). An overview of the core concept
of CFR, its mathematical model as well as its most famous
variants is given. We explain the main techniques used in
Pluribus, a poker bot that is able to extend CFR to a poker
variant of unprecedented complexity achieving superhuman
performance.

Introduction

Historically, tabletop games have often been used as bench-
marks by artificial intelligence (Al) and game theory re-
searchers in order to measure the performance of approaches
and algorithms in a controlled environment. In recent years,
there have been great strides in the application of self-play
to board games such as Chess and Go - both notably perfect
information games - leading to superhuman performances
(Silver et al. 2017). Another such famous challenge problem
is the game of Texas Hold’em - a variant of poker - owing
to its popularity, simple rules and most importantly its prop-
erty of being a game of imperfect information. After years
of work solving two-player (so-called heads-up) limit poker
(Bowling et al. 2015), the next milestone was the creation of
a poker bot able to beat top professionals at the game of six-
player no-limit Texas Hold’em. This seemingly small step
turns out to be feat of engineering due to the substantially
increased game complexity.

This paper will solely focus on Texas Hold’em. As such,
any further mention of poker refers to Texas Hold’em.

Poker and its variants

With regards to game-theoretic specification poker is a zero-
sum, extensive-form game of imperfect information.

There are two main properties to distinguish between
Texas Hold’em variants: The level of granularity of bet sizes
as well as the number of players. The former yields the
distinction between limit and no-limit poker. As the name
suggests, in limit poker the bet sizes and number of raises
are limited, while there are no such restrictions in no-limit
poker.

Poker can technically be played with an arbitrary number
of players from two to 23, with the two most famous variants
being heads-up poker as well as six-player poker.

Evaluation of poker bot strength

The most common units of measurement for poker bot
strength are milli bets per hand (mb/hand) (Zinkevich et
al. 2007) as well as milli big blinds per game (mbb/game)
(Moravcik et al. 2017). Both of them are commonly used
as units of exploitability: a poker bots performance against
its worst-case opponent. A poker bot tries to minimize ex-
ploitability and maximize its winning margin.

Superhuman performance in heads-up poker

Bowling et al. have been able to essentially weakly solve
heads-up limit poker - a game of approximately 10'® game
states (Billings et al. 2003) -, where essentially weakly
solved means that an e-Nash-equilibrium with a sufficiently
small € is computed. In an e-Nash-equilibrium no player
can increase their utility by more than e by deviating from
their strategy. The poker bot of Bowling et al. reaches an
exploitability of 0.986 mbb/game yielding an ¢ that is suf-
ficiently small in so far as a human lifetime of play is not
enough to differentiate its equilibrium from a Nash equilib-
rium.

Three years later Brown and Sandholm created a poker
bot named Libratus which beat top professionals in heads-
up no-limit poker exhibiting superhuman performance. This
was another milestone in poker bot research, as the no-limit
poker variant comes with an increase in complexity to 107
game states (Johanson 2013). We emphasize that exhibiting
superhuman performance is a far weaker benchmark than
weakly solving a game. This is exemplified by the fact that
the exploitability of Libratus remains above 70 mbb/game,
even in scaled-down variants of heads-up no-limit poker
(Brown and Sandholm 2018).

Definitions

Game tree Extensive-form games can be modelled using
game trees, where each node is a decision point for a partic-
ular player or a chance node. An example of a chance node
is the flop in poker.

Information set Due to poker being a game of imperfect
information, many game states become indistinguishable to
the player. Each such set of game states forms one infor-
mation set. The strategy of an agent must solely depend on

its information set, as an agent cannot act based on hidden
information like its opponents cards (Johanson 2013).

Strategy A strategy of player ¢ o; is a function that as-
signs a probability distribution over all legal actions at every
information set.

A strategy profile o is formed by all player strategies.

History A history is a sequence of actions which lead to a
specific game state.

Utility The utility of a terminal history in the game tree
is positive if chips have been gained at the terminal history
or negative if chips have been lost. In its simplest form, the
utility of a terminal history corresponds to the change of a
players own chip count.

The utility of a strategy is u;(0) = >}, ui(h)7?(h)
where Z is the set of terminal game histories and 77 (h) is
the probability that the given terminal history is reached with
the given strategy.

Regret Regret refers to the loss of utility which occurs due
to a player staying on one strategy instead of switching to a
better one. More formally, it is the difference between the
utilities of the played strategy and the best possible strategy
at a particular time ¢.

Counterfactual regret minimization

Counterfactual regret minimization has been known as the
most promising approach for creating approximate Nash
equilibrium solutions for two-player extensive-form games
with imperfect information. Both of the aforementioned
poker bots use a variant of CFR.

Regret matching is an adaptive procedure that leads to
a correlated equilibrium if used by every player of a game
(Hart and Mas-Colell 2000, Main Theorem). At each time
step, an agent can either remain on its strategy or switch
to another strategy. The probability of switching to another
strategy is proportional to the regret of not having always
played the alternative strategy. This leads to the agents re-
grets converging to zero (Hart and Mas-Colell 2000, Theo-
rem A).

Counterfactual value v;(c,h) describes the utility an
agent would have received, had he played strategy o at his-
tory h: vi(o,h) = 3y pe. 77 (R)7 (R, 2)ui(z), where
Z 1is the set of terminal histories, 77, (h) is the probability
that the other players strategies (and chance) lead to history
h, and 77 (h, z) is the probability of going from history h to
history z. h = z means that h is a proper prefix of z, which
means that only those terminal game states are considered
which pass through the game state at history h (Johanson et
al. 2012).

Counterfactual regret of not taking action a at history
h is defined as: 7(h,a) = v;(01-q,h) — v;(0, h), where
01—, denotes the strategy profile ¢ with the modification
that action a is played at information set .

The counterfactual regret of not taking action a at infor-
mation set [is defined as: 7(1,a) = >, ., 7(h,a).

The cumulative counterfactual regret is then: R (I, a) =
S ri(I,), where (I, a) denotes the regret of players
not choosing action a at information set I of player ¢ at the
time ¢ (Zinkevich et al. 2007). RiT’Jr is used as a notation for
non-negative cumulative counterfactual regret.

Strategy updates To obtain an updated strategy for the
time 7' + 1, we now use the regret matching algorithm of
Hart and Mas-Colell with non-negative cumulative counter-
factual regret. This yields the formula:

R{"*(1,a) T+
U’LT+1(I7G)= ZuEA(I) RT’+(I,a)7 ZaEA(I)Rl (,(I)>0
ﬁ7 otherwise

The entire game tree is traversed and for each information
set I, the probability of each legal action in this information
set is adapted to be proportional to the non-negative cumu-
lative counterfactual regret of not having chosen that action.
The player is able to precisely calculate the regret of not hav-
ing chosen an action, because the player is playing against
itself (or older copies of itself) so that a game with alterna-
tive decisions can just be simulated.

Minimization To minimize counterfactual regret, two or
more players repeatedly play the game using the aforemen-
tioned strategy updating rule. After T’ iterations, the returned
approximated equilibrium is (57,54 ,...,52), where G+
denotes the average strategy of player ¢ from time 1 to 7T'.
This average strategy is the computed approximate Nash
equilibrium. Note that this requires storing the regrets of all
actions and information sets as well as updating them after
each iteration.

Variants of CFR

Vanilla CFR This is the an unoptimized version of CFR,
where the entire game tree is traversed at every iteration and
no sampling is used.

CFR* replaces regret matching with so-called regrer
matching™, where cumulative counterfactual regret is re-
placed by cumulative counterfactual regret™:

R (I,a) = maz{RY(I,a),0}

RT(I a)= R?T_l(la a) +Ui(<71T_>a,I) - Ui(U'T,I), T>1
- U'L(U?—)(NI) 7/Ui(O—T7I), T=1

In CFR™ it is the current strategy that almost converges or
converges to a Nash equilibrium, which means that the aver-
aging step could be skipped, however CFR™ uses weighted
averaging so that the strategies converge faster. The weight
sequence that CFR* uses is w? = maz{T — d, 0}, where
d is the averaging delay in number of iterations (Tammelin
2014).

Monte Carlo CFR In Monte Carlo CFR (MCCFR), in-
stead of traversing the entire game tree on every iteration,
we partition the set of terminal histories Z into blocks
{Q1,...,Q,}. On each iteration, one of these blocks is sam-
pled and only the terminal histories of the sampled block are
considered (Lanctot et al. 2009).

Chance-sampled CFR (CSCFR) is MCCFR where each
block contains all terminal histories with the same sequence
of chance outcomes. This works in games where the proba-
bility of a chance outcome is independent of players’ deci-
sions, as is the case in poker.

Outcome-sampling MCCFR In this variant of MCCFR
each block contains a single terminal history. As such, on
each iteration a single terminal history is sampled and only
information sets along that history are updated.

External-sampling MCCFR In external-sampling we
have a block for every strategy of the opponents and chance.
This means that a block exists for every opponent-strategy-
chance-combination.

Superhuman performance in six-player poker
A player playing a Nash equilibrium strategy in two-player
zero-sum games is guaranteed not to loose in expecta-
tion. This is not necessarily the case in multiplayer games
(Brown and Sandholm 2019). Pluribus, a poker bot created
by Brown and Sandholm was able to consistently beat top
professionals in six-player no-limit poker by using algo-
rithms that are not even guaranteed to converge to a Nash
equilibrium outside of two-player zero-sum games. Pluribus
first computes a blueprint strategy offline, which is later im-
proved upon via real-time search in live play.

Abstractions are used to reduce the complexity of the
game. For one, insignificantly different possible actions are
bucketed together and treated as identical. As an example,
while any whole-dollar bet between $100 and $10 000 is al-
lowed in Texas Hold’em, there is little difference between
betting $200 and $201. This is called action abstraction. Ad-
ditionally, similar information is bucketed together as well,
which is called information abstraction. There is little to be
gained differentiating between a 10-high straight and a 9-
high straight.

Blueprint strategy In the first phase a blueprint strategy
is computed using self-play with a form of MCCFR. Brown
and Sandholm use several techniques to improve the com-
putational efficiency:

As the difference between the counterfactual values gets
added to the counterfactual regret in Pluribus’ form of MC-
CFR, early strategy iterations, which are close to random,
influence iterations far into the future. To combat this, Lin-
ear CFR discounts regrets based on the number of iterations
that have passed. However, Linear CFR is only used in early
iterations by Pluribus as Brown and Sandholm have empiri-
cally shown that the cost outweighs the benefit after a certain
point.

Another one of the used optimization techniques is prun-
ing, where actions with very high negative regret are not ex-
plored in 95% of iterations.

Live play During live play, Pluribus starts with its
blueprint strategy. In later rounds a form of real-time search
is used by looking ahead a couple of moves until the
depth limit of the algorithms look-ahead is reached. Dur-
ing real-time search abstractions are removed to combat any

abstraction-caused weaknesses. The value of the board con-
figuration at the leaf node of the look-ahead is calculated
by simulating the game with all players choosing between
k = 4 strategies: the blueprint strategy and three variations
of it biased towards folding, calling and raising. This results
in a strategy that cannot be as easily exploited by opponents
that switch strategies. The game simulation is done via Lin-
ear MCCEFR if the subgame is relatively large, or Linear
CSCFR otherwise.

To remain unpredictable to its opponents Pluribus reviews
what it would have done in the current situation, had it had
any other possible hand, and adjusts its strategy accordingly.

Evaluation Pluribus played 10 000 hands of six-player
no-limit poker against top professionals, all of whom have
won more than $1 million playing poker professionally, and
won an average of 48 mbb/game.

Conclusions

Six-player no-limit poker is surely not solved yet. Nonethe-
less, the emergence of a superhuman bot for six-player
poker is a remarkable achievement due to the complexity
increase from two-player poker. Game-theoretic techniques
that are only proven leading to an unbeatable bot in two-
player poker have still been able to consistently beat top
professionals in six-player poker. This begs the question of
whether game-theoretical performance bounds are an appro-
priate measure of algorithmic performance in scientific chal-
lenge problems.

References

Billings, D.; Burch, N.; Davidson, A.; Holte, R.; Schaeffer,
J.; Schauenberg, T.; and Szafron, D. 2003. Approximat-
ing Game-Theoretic Optimal Strategies for Full-scale Poker.
661-668.

Bowling, M.; Burch, N.; Johanson, M.; and Tammelin, O.
2015. Heads-up limit hold’em poker is solved. Science
347(6218):145-149. Publisher: American Association for
the Advancement of Science.

Brown, N., and Sandholm, T. 2018. Superhuman Al for
heads-up no-limit poker: Libratus beats top professionals.
Science 359(6374):418-424. Publisher: American Associa-
tion for the Advancement of Science.

Brown, N., and Sandholm, T. 2019. Superhuman Al for
multiplayer poker. Science 365(6456):885-890. Publisher:
American Association for the Advancement of Science.

Hart, S., and Mas-Colell, A. 2000. A Simple Adaptive Pro-
cedure Leading to Correlated Equilibrium. Econometrica
68(5):1127-1150. Publisher: [Wiley, Econometric Society].

Johanson, M.; Bard, N.; Lanctot, M.; Gibson, R.; and Bowl-
ing, M. 2012. Efficient Nash equilibrium approximation
through Monte Carlo counterfactual regret minimization. In
Proceedings of the 11th International Conference on Au-
tonomous Agents and Multiagent Systems - Volume 2, AA-
MAS ’12, 837-846. Richland, SC: International Foundation
for Autonomous Agents and Multiagent Systems.

Johanson, M. 2013. Measuring the Size of Large No-Limit
Poker Games. Technical Report arXiv:1302.7008, arXiv.
arXiv:1302.7008 [cs] type: article.

Lanctot, M.; Waugh, K.; Zinkevich, M.; and Bowling, M.
2009. Monte Carlo Sampling for Regret Minimization in
Extensive Games. In Advances in Neural Information Pro-
cessing Systems, volume 22. Curran Associates, Inc.
Morav¢ik, M.; Schmid, M.; Burch, N.; Lisy, V.; Morrill, D.;
Bard, N.; Davis, T.; Waugh, K.; Johanson, M.; and Bowling,
M. 2017. DeepStack: Expert-level artificial intelligence in
heads-up no-limit poker. Science 356(6337):508-513. Pub-
lisher: American Association for the Advancement of Sci-
ence.

Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.;
Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.;
Graepel, T.; Lillicrap, T.; Simonyan, K.; and Hassabis, D.
2017. Mastering Chess and Shogi by Self-Play with a Gen-
eral Reinforcement Learning Algorithm. Technical Report
arXiv:1712.01815, arXiv. arXiv:1712.01815 [cs] type: arti-
cle.

Tammelin, O. 2014. Solving Large Imperfect Information
Games Using CFR+. Technical Report arXiv:1407.5042,
arXiv. arXiv:1407.5042 [cs] type: article.

Zinkevich, M.; Johanson, M.; Bowling, M.; and Piccione,
C. 2007. Regret Minimization in Games with Incomplete
Information. In Advances in Neural Information Processing
Systems, volume 20. Curran Associates, Inc.

