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Abstract

Panoptic 3D scene reconstruction describes the joint task
of geometric reconstruction, 3D semantic segmentation, and
3D instance segmentation. A multitude of tasks in robotics,
augmented reality and human-computer interaction rely on
this comprehensive understanding of 3D scenes. Extending
prior work which performs panoptic 3D scene reconstruc-
tion from a single RGB image, our proposal aims to enhance
the visual clarity and discernibility of the generated geom-
etry using an additional object-level generative approach.
Leveraging an existing 3D asset generation framework, we
integrate object-level reconstruction into the 3D scene, yield-
ing superior aesthetic quality.

1. Introduction
While humans can easily infer the 3D structure as well as
the complete (panoptic) semantics of a scene from a single
image, this task has been a longstanding challenge in the
field of computer vision. The task fundamentally prerequi-
sites learning a strong prior of the 3D world. Traditional
methods have made significant strides, from generating geo-
metrically coherent structures [11, 40] to learning different
instance semantics [17, 27, 36]. More recent approaches di-
rectly learn the 3D panoptic semantics as a whole [8, 50], yet
they fall short in capturing the intricate details and nuances
at the object level. This paper introduces a novel approach
to bridge this gap by integrating a specialized object-level
model into the reconstruction process, thereby leveraging
the specialized model’s object-priors.

Our approach1 models panoptic 3D reconstruction as a
two-stage problem. We first use the model of Dahnert et al.
[8] to create an initial reconstruction. Then, we leverage the
instance masks to extract the object geometries out of the
reconstructed scene. We input each of the extracted objects
along with cropped images from the scene and text labels

1Our code can be found at https://github.com/Anna-Ribic/
panoptic-reconstruction-ml3d.

into a diffusion model [5] to refine the rough object-level
geometries. Finally, we integrate the refined object geome-
tries back into the initial scene reconstruction to obtain a
complete and refined panoptic 3D scene reconstruction.

In summary, our main contributions are as follows:
• We propose a novel approach to panoptic 3D reconstruc-

tion involving an inference pipeline that leverages object-
level reconstruction models to refine the output of a 3D
scene reconstruction backbone.

• We generate a new synthetic 3D-Front [15] dataset com-
prising over 24,000 samples, each annotated with both 2D
and 3D ground truth data.

• We qualitatively demonstrate the effectiveness of our ap-
proach on the 3D-Front [15] dataset, showing significant
improvements over the state-of-the-art.

• We show that fine-tuning SDFusion [5] on the input scene’s
object distribution (in our case the 3D-Future dataset [16])
significantly improves the quality of the refined objects.

• We introduce a conceptually simple yet effective method
for shape alignment, which outperforms rigid alignment
methods in our experiments.

2. Related Work
2D panoptic segmentation 2D panoptic segmentation
merges semantic and instance segmentation, providing de-
tailed pixel-level parsing of images, capturing both gen-
eral categories (semantic segmentation) and individual ob-
ject identities (instance segmentation) [25]. Since the orig-
inal task formulation by Kirillov et al. [25], a number of
works have been proposed to solve the task [2–4, 26, 28–
30, 35, 43, 44, 47–49], while more recent approaches [23]
try to unify image segmentation in its entirety.
Single-view 3D reconstruction The work by Snavely et al.
[41] was the first notable attempt at reconstructing 3D scenes
from unordered photo collections. Since then, the field of
image-based 3D reconstruction has seen a number of ad-
vancements, culminating in the task of single-view 3D re-
construction [6, 11, 22, 33, 36, 40, 45].
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Shape priors Wu et al. [46] note that the task of single-
view 3D reconstruction is non-deterministic, as there are
many 3D shapes that can explain a given single-view input,
and propose to use shape priors to shape the solution space
such that the reconstructed shapes are realistic, but not nec-
essarily the ground truth. Our approach extends the idea of
Wu et al. [46] to entire 3D scenes.
3D scene understanding The task of 3D scene understand-
ing and panoptic reconstruction is analogous to its 2D coun-
terpart and aims to infer the 3D structure and semantics of a
scene, including the 3D layout, object instances, and their 3D
shapes from images [8] or noisy geometry [20, 21]. Dahnert
et al. [8] propose a method – henceforth called Panoptic 3D
– to jointly solve the tasks of 3D scene understanding and
single-view 3D reconstruction by lifting features produced
by a 2D backbone into a 3D volume of the camera frustrum,
and jointly optimizing for geometric reconstruction as well
as semantic and instance segmentation.
Modality-conditioned shape generation 3D generative
models represent objects in a variety of modalities, including
point clouds [1, 32], occupancy grids [33], meshes [34], and
signed distance functions [38]. Furthermore, these models
can also be distinguished by the type of input they take,
such as incomplete shapes [10], images [14], text [31, 51],
or other modalities [52]. Notably, Cheng et al. [5] propose
SDFusion, a 3D object reconstruction method conditioned
on images, text and geometrical input.
Datasets Notable datasets in the field of panoptic 3D re-
construction include ScanNet [9] and Replica [42], which
provide rich annotations for scene understanding tasks. An-
other such dataset, 3D-Front [15], provides comprehensive
coverage of indoor scenes while offering detailed geometric
reconstructions as well as semantic and instance segmenta-
tion annotations. The synthetic 3D dataset contains 6,801
mid-size apartments with 18,797 rooms populated by 3D
shapes from the 3D-Future [16] dataset. The dataset’s high-
quality data acquisition process ensures accurate represen-
tations, establishing it as a valuable resource for advancing
research in 3D panoptic reconstruction.

In an effort to refine Panoptic 3D, we compile a custom
dataset comprising over 24,000 samples. Leveraging the di-
verse scenes of the 3D-Front dataset, we use BlenderProc
[12] to randomly sample camera poses and render corre-
sponding 2D views. Utilizing the C++ pipeline from Dahn-
ert et al. [8], we generate annotated 3D geometry within the
respective camera frustum.

3. Method
3.1. Initial Panoptic Scene Reconstruction

We leverage Panoptic 3D [8] to predict the camera frustum
geometry XPgeom as well as associated 3D semantic and in-
stance labels XPsem , XPinstance within the image. Said model

yields both 2D and 3D representations of detected objects
and does so by employing a ResNet-18 [18] encoder for
feature extraction from the input image. Subsequently, both
a depth encoder and a Mask R-CNN [19] are applied to the
ResNet-18 encoder features to predict both a 2D depth map
and a 2D instance mask. During training, we learn the 2D
output utilizing proxy losses for both depth estimation (Ld)
and instance segmentation (Li).

The depth map facilitates the backprojection of features
into a sparse volumetric grid, while the 2D instance mask
is propagated to serve as a seed for the 3D instance mask
prediction. Finally, a 3D U-Net [7] processes the sparse back-
projection to forecast occupancy, distance field, and both
semantic and instance labels for each individual occupancy
within the grid.

In addition to the proxy losses, binary cross-entropy is
used on the occupancy prediction at different hierarchy levels
and an l1 loss is employed on the distance field at the final
hierarchy level. The total loss can be formalized as

L = wdLd + wiLi +
∑
h

(wgLh
g + wsLh

s + woLh
o ), (1)

where Lh
g ,Lh

s ,Lh
o represent the geometry as well as 3D

semantic and instance label losses at different hierarchy lev-
els, and wx∈{d,i,g,s,o} being weighting factors.

At inference time, we use the 2D instance mask to extract
RGB crops Icrop of the input image, and the 3D instance
mask to extract the corresponding 3D geometry XPgeom, crop .
The extracted image, geometry and the semantic label are
subsequently input into the object-level reconstruction model
for shape reconstruction.

3.2. Object-Level Reconstruction

We use SDFusion [5] for object shape reconstruction, which
expects a signed distance field as its primary input, and addi-
tionally leverages an RGB image and a textual representation
as conditional inputs to guide the reconstruction process. To
this end, SDFusion employs task-specific encoders ([13, 39])
to get image and text embeddings, while simultaneously em-
bedding the 3D shape into a latent space using a pre-trained
vector quantized variational autoencoder (VQ-VAE) [37].
At training time, noise is introduced to the shape latent via
forward diffusion, which is followed by a concatenation of
the conditional embeddings. This serves as input to the 3D
U-Net [7] denoising network which reconstructs the latent
code. Within the denoising U-Net, cross-attention is applied
along the concatenated latent code to modulate the denoising
process. Ultimately, the VQ-VAE decoder reconstructs the
shape.

At inference time, we use SDFusion to output a refined
object geometry XS for every object-level geometry ex-
traction XPgeom, crop , leveraging the image crop Icrop and the
corresponding semantic label XPsem .



Figure 1. The diagram illustrates the multi-step process of panoptic scene reconstruction, object-level reconstruction, and object-level shape
alignment. This includes leveraging Panoptic 3D [8] for initial scene reconstruction, SDFusion [5] for object shape reconstruction, and a
custom registration algorithm for precise alignment of reconstructed objects within the scene.

3.3. Object-Level Shape Alignment

The inference output of SDFusion is front-facing and might
not align with the object’s orientation in the original 3D
scene. Thus, to adequately replace the original objects with
the refined ones, we employ a custom registration algo-
rithm to ensure proper alignment of the reconstructed objects
within the scene. This process consists of 3 key steps:
1. Position alignment: To establish a common frame of ref-

erence and facilitate subsequent re-orientation, we align
the centroid of the refined object with the original object.

2. Rotation & scale optimization: Following position
alignment, we want to find the correct orientation of our
object. As we assume that the object is parallel to the floor
and with the right side up, we only iterate through rota-
tions around the y-axis. After each rotation step we scale
our refined object in all three directions to fit the initial
dimensions. We find the best rotation and scale by sam-
pling points uniformly from both meshes and computing
the chamfer distance.

3. Floor alignment: As most of the instances are standing
on the floor, we align the floor distance of our refined
object with the lowest vertex of the initial object. This
is necessary as the centroids might not have the same
object-relative height due to differing geometries.

Unlike a general approach like ICP, our customized approach
leverages domain-specific knowledge about reconstructed
indoor scenes in order to limit the degrees of freedom, like
rotation in a single direction. This leads to a more robust
approach, especially if the geometries are not identical.

4. Results

Panoptic reconstruction retraining We leverage our syn-
thesized dataset to refine the training of Panoptic 3D [8].
Initially, we pre-train the 2D encoder, depth estimation and
2D instance prediction using the ADAM optimizer [24], a
batch size of 1 and learning rate 1e-4 for 570k iterations.

Depth Box Class. Box Regress.

Dahnert et al. [8] 0.23 3.39 0.092
Ours 0.196 1.3 0.149

Table 1. Results for joint training of the 2D encoder, depth estima-
tion and 2D instance prediction. For depth we report the ℓ1 distance
between the predicted and ground-truth depth maps. Additionally
we report the ℓ1 distance for the regressed 2D boxes and a CE-loss
on the box classification.

The evaluation results for our 2D model compared to the
pre-trained model from Dahnert et al. [8] are presented in
Tab. 1. As illustrated in Fig. 5, our approach shows perfor-
mance comparable to the pre-trained model. However, it
encounters challenges in generating completely clear depth
results, occasionally displaying some irregularities. Hence,
we use the pre-trained version of Panoptic 3D for our remain-
ing inference experiments.

Refined reconstruction The comparison between recon-
structed scenes generated by our method and those produced
by Panoptic 3D is illustrated in 2a. The results of Panop-
tic 3D exhibit instances that are noisy and lack clear edges
from neighboring geometries. Additionally, unobserved ar-
eas, whether occluded by other objects or out of sight, are
disregarded, resulting in incomplete geometries within the
reconstructed scene. In contrast, our method enhances three
key properties: instances have clean surfaces, are distinct
from surrounding geometries, and are represented as com-
plete objects; all improvements which can be attributed to
the incorporation of SDFusion into our inference pipeline.
In SDFusion, our approach processes each object seperately,
resulting in distinct object geometries by design. Our align-
ment procedure yields proper placement of refined instances
within the scene.

Conversely, in cases where instance mask predictions
are noisy, or instances are missing completely, our method



(a) While Panoptic 3D fails to reconstruct unobserved regions, resulting in artifacts and missing
geometry, our method successfully generates complete and distinguishable 3D geometry for each
instance.

(b) We showcase scenarios in which our method
encounters challenges in scene reconstruction. On
the left, a scene is depicted where our method strug-
gles due to missing instances, while on the right,
an object is misclassified, resulting in an erroneous
reconstruction.

Figure 2. Comparison of pre-trained Panoptic 3D [8] vs ours.

struggles to create good scene reconstructions (Figure 2b).
In this setting, Panoptic 3D generates the table, but is not
able to identify it. Due to the absence of the table instance,
SDFusion is unable to reconstruct it. For the other instances,
our method can maintain smoothness even with bad-quality
mask predictions, but our alignment algorithm occasionally
fails, resulting in object intersections, disproportionate scales
and incorrect orientations. Lastly, our method also struggles
if wrong labels are provided for an instance (Figure 2b).

We solely focus on qualitative results since we priori-
tize aesthetic quality over exact reconstruction. To obtain
quantitative results in this setting, we refer to the evaluation
method of Wu et al. [46].

SDFusion fine-tuning In order to align SDFusion to the
shape distribution of 3D-Front, we fine-tune the model on
the 3D-Future dataset [16]. We examine the effects of fine-
tuning SDFusion in A.1.

5. Conclusion, Limitations & Future Work

Conclusion In summary, our method demonstrates the ef-
fectiveness of combining reconstruction techniques with an
object-level generation framework to significantly enhance
the aesthetic quality of 3D instances within a reconstructed
scene. Moreover, our approach facilitates a straightforward
process for generating virtual environments from single im-
ages, with potential applications in gaming, virtual reality,
and augmented reality settings. An additional advantage of
utilizing a multi-modal diffusion model instead of directly
leveraging high-quality 3D objects, such as CAD models, is

the ability to customize inputs, enabling fine-grained control
over the reconstructed scene.

Limitations While our results show promise, it is impor-
tant to acknowledge certain limitations of our method. Firstly,
while Panoptic 3D does not need to detect an instance to re-
construct its approximate shape, SDFusion is only applied
to detected objects. As a result, undetected objects may be
entirely omitted from the refinement process. Noisy instance
segmentations also pose a challenge, as our scale and po-
sition estimations are contingent upon the initial instance.
Hence, instance segmentations that include parts of other in-
stances or elements of the surrounding environment can lead
to larger, misplaced refined instances. A concrete example
of such case is presented in Fig. 2b.

Future Work To overcome these limitations, we suggest
two avenues for future research. The first direction involves
implementing end-to-end training with adapted loss func-
tions, aimed at penalizing misidentified instances more ef-
fectively. This approach could enhance the accuracy of in-
stance segmentation and reduce the incidence of missing or
misattributed objects in the reconstructed scene. Secondly,
refining the merging process by integrating a pose estima-
tion network can be utilized to enhance object alignment and
scaling. Another promising avenue for exploration involves
guiding object-level reconstruction with more detailed de-
scriptive inputs. By incorporating these object descriptions
during inference – inspired by the findings of the SDFu-
sion paper – we can potentially generate more tailored and
contextually relevant reconstructions.
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A. Appendix Section
A.1. Additional SDFusion fine-tuning results

Figure 3. Loss curve of our SDFusion fine-tune (smoothed).

Figure 4. Effect of fine-tuning SDFusion on reconstruction results.
The process of fine-tuning significantly enhances our capacity to
generate objects that more accurately align with those presented
in Front3D. A notable improvement is observed in the refined
geometries of beds. Prior to fine-tuning, the standard SDFusion
model produced representations resembling armchairs; however,
post-fine-tuning, the model successfully generates geometries that
appropriately resemble beds.

The loss curve in Fig. 3 shows that the fine-tuning process
was successful. The results of the fine-tuning process are
shown in Fig. 4. We used the conversion procedure from
Cheng et al. [5] to convert the object meshes from the dataset
to signed distance fields. We train the model for 12,000 steps
using the original hyperparameters from Cheng et al. [5]
but with a batch size of 32. The dataset contains 16,000
samples, hence the 12,000 steps of fine-tuning correspond to
24 epochs with a batch size of 32.

A.2. Additional Panoptic 3D retraining results

(a) Depth map (ours). (b) Depth map ([8]).

(c) Geometry from depth (ours). (d) Geometry from depth ([8]).

Figure 5. 2D results from the Panoptic 3D model. Our re-training
results (left) vs. results from Dahnert et al. [8] (right).

Figure 6. Depth loss curve for retraining of panoptic model (First
45k iterations).

A.3. Refined 3D scene inference details

The results in Sec. 4 were generated using the pre-trained
Panoptic 3D model and our fine-tuned version of SDFusion
(6,000 steps checkpoint).
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